224 research outputs found

    Physiological Correlates of Endurance Time Variability during Constant-Workrate Cycling Exercise in Patients with COPD

    Get PDF
    RATIONALE: The endurance time (T(end)) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in T(end). METHODS: Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (W(peak)). Patients were divided into tertiles of T(end) [Group 1: <4 min; Group 2: 4-6 min; Group 3: >6 min]. Disease severity (FEV(1)), aerobic fitness (W(peak), peak oxygen consumption [VO2(peak)], ventilatory threshold [VO2(VT)]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HR(CET)/HR(peak)]) were analyzed as potential variables influencing T(end). RESULTS: W(peak), VO2(peak), VO2(VT), MVC, leg fatigue at end of CET, and HR(CET)/HR(peak) were lower in group 1 than in group 2 or 3 (p≤0.05). VO2(VT) and leg fatigue at end of CET independently predicted T(end) in multiple regression analysis (r = 0.50, p = 0.001). CONCLUSION: T(end) was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in T(end) was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in T(end) among patients with COPD

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    Gender and respiratory factors associated with dyspnea in chronic obstructive pulmonary disease

    Get PDF
    RATIONALE: We had shown that COPD women expressed more dyspnea than men for the same degree of airway obstruction. OBJECTIVES: Evaluate gender differences in respiratory factors associated with dyspnea in COPD patients. METHODS: In a FEV(1 )% matched population of 100 men and women with COPD we measured: age, MMRC, FEV(1), FVC, TLC, IC/TLC, PaO(2), PaCO(2), D(LCO), P(imax), P(0.1), Ti/Ttot, BMI, ffmi, 6MWD and VAS scale before and after the test, the Charlson score and the SGRQ. We estimated the association between these parameters and MMRC scores. Multivariate analysis determined the independent strength of those associations. RESULTS: MMRC correlated with: BMI (men:-0.29, p = 0.04; women:-0.28, p = 0.05), ffmi (men:-0.39, p = 0.01), FEV(1 )% (men:-0.64, p < 0.001; women:-0.29, p = 0.04), FVC % (men:-0.45, p = 0.001; women:-0.33, p = 0.02), IC/TLC (men:-0.52, p < 0.001; women: -0.27, p = 0.05), PaO(2 )(men:-0.59, p < 0.001), PaCO(2 )(men:0.27, p = 0.05), D(LCO )(men:-0.54, p < 0.001), P(0.1)/P(imax )(men:0.46, p = 0.002; women:0.47, p = 0.005), dyspnea measured with the Visual Analog Scale before (men:0.37, p = 0.04; women:0.52, p = 0.004) and after 6MWD (men:0.52, p = 0.002; women:0.48, p = 0.004) and SGRQ total (men:0.50, p < 0.001; women:0.59, p < 0.001). Regression analysis showed that P(0.1)/P(imax )in women (r(2 )= 0.30) and BMI, DL(CO), PaO(2 )and P(0.1)/P(imax )in men (r(2 )= 0.81) were the strongest predictors of MMRC scores. CONCLUSION: In mild to severe COPD patients attending a pulmonary clinic, P(0.1)/P(imax )was the unique predictor of MMRC scores only in women. Respiratory factors explain most of the variations of MMRC scores in men but not in women. Factors other than the respiratory ones should be included in the evaluation of dyspnea in women with COPD

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    Construction of Transgenic Plasmodium berghei as a Model for Evaluation of Blood-Stage Vaccine Candidate of Plasmodium falciparum Chimeric Protein 2.9

    Get PDF
    BACKGROUND:The function of the 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1-19) expressed by Plasmodium has been demonstrated to be conserved across distantly related Plasmodium species. The green fluorescent protein (GFP) is a reporter protein that has been widely used because it can be easily detected in living organisms by fluorescence microscopy and flow cytometry. METHODOLOGY AND RESULTS:In this study, we used gene targeting to generate transgenic P. berghei (Pb) parasites (designated as PfMSP1-19Pb) that express the MSP1-19 of P. falciparum (Pf) and the GFP reporter protein simultaneously. The replacement of the PbMSP1-19 locus by PfMSP1-19 was verified by PCR and Southern analysis. The expression of the chimeric PbfMSP-1 and the GFP was verified by Western blot and fluorescence microscopy, respectively. Moreover, GFP-expressing transgenic parasites in blood stages can be readily differentiated from other blood cells using flow cytometry. A comparison of growth rates between wild-type and the PfMSP1-19Pb transgenic parasite indicated that the replacement of the MSP1-19 region and the expression of the GFP protein were not deleterious to the transgenic parasites. We used this transgenic mouse parasite as a murine model to evaluate the protective efficacy in vivo of specific IgG elicited by a PfCP-2.9 malaria vaccine that contains the PfMSP1-19. The BALB/c mice passively transferred with purified rabbit IgG to the PfCP-2.9 survived a lethal challenge of the PfMSP1-19Pb transgenic murine parasites, but not the wild-type P. berghei whereas the control mice passively transferred with purified IgG obtained from adjuvant only-immunized rabbits were vulnerable to both transgenic and wild-type infections. CONCLUSIONS:We generated a transgenic P. berghei line that expresses PfMSP1-19 and the GFP reporter gene simultaneously. The availability of this parasite line provides a murine model to evaluate the protective efficacy in vivo of anti-MSP1-19 antibodies, including, potentially, those elicited by the PfCP-2.9 malaria vaccine in human volunteers

    Antibodies elicited in adults by a primary Plasmodium falciparum blood-stage infection recognize different epitopes compared with immune individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asexual stage antibody responses following initial <it>Plasmodium falciparum </it>infections in previously healthy adults may inform vaccine development, yet these have not been as intensively studied as they have in populations from malaria-endemic areas.</p> <p>Methods</p> <p>Serum samples were collected over a six-month period from twenty travellers having returned with falciparum malaria. Fourteen of these were malaria-naïve and six had a past history of one to two episodes of malaria. Antibodies to seven asexual stage <it>P. falciparum </it>antigens were measured by ELISA. Invasion inhibitory antibody responses to the 19kDa fragment of merozoite surface protein 1 (MSP1<sub>19</sub>) were determined.</p> <p>Results</p> <p>Short-lived antibody responses were found in the majority of the subjects. While MSP1<sub>19 </sub>antibodies were most common, MSP1 block 2 antibodies were significantly less frequent and recognized conserved domains. Antibodies to MSP2 cross-reacted to the dimorphic allelic families and anti-MSP2 isotypes were not IgG3 skewed as shown previously. MSP1<sub>19 </sub>invasion inhibiting antibodies were present in 9/20 patients. A past history of malaria did not influence the frequency of these short-lived, functional antibodies (p = 0.2, 2-tailed Fisher's exact test).</p> <p>Conclusion</p> <p>Adults infected with <it>P. falciparum </it>for the first time, develop relatively short-lived immune responses that, in the case of MSP1<sub>19</sub>, are functional. Antibodies to the polymorphic antigens studied were particularly directed to allelic family specific, non-repetitive and conserved determinants and were not IgG subclass skewed. These responses are substantially different to those found in malaria immune individuals.</p

    Differences in Walking Pattern during 6-Min Walk Test between Patients with COPD and Healthy Subjects

    Get PDF
    BACKGROUND: To date, detailed analyses of walking patterns using accelerometers during the 6-min walk test (6MWT) have not been performed in patients with chronic obstructive pulmonary disease (COPD). Therefore, it remains unclear whether and to what extent COPD patients have an altered walking pattern during the 6MWT compared to healthy elderly subjects. METHODOLOGY/PRINCIPAL FINDINGS: 79 COPD patients and 24 healthy elderly subjects performed the 6MWT wearing an accelerometer attached to the trunk. The accelerometer features (walking intensity, cadence, and walking variability) and subject characteristics were assessed and compared between groups. Moreover, associations were sought with 6-min walk distance (6MWD) using multiple ordinary least squares (OLS) regression models. COPD patients walked with a significantly lower walking intensity, lower cadence and increased walking variability compared to healthy subjects. Walking intensity and height were the only two significant determinants of 6MWD in healthy subjects, explaining 85% of the variance in 6MWD. In COPD patients also age, cadence, walking variability measures and their interactions were included were significant determinants of 6MWD (total variance in 6MWD explained: 88%). CONCLUSIONS/SIGNIFICANCE: COPD patients have an altered walking pattern during 6MWT compared to healthy subjects. These differences in walking pattern partially explain the lower 6MWD in patients with COPD

    The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease

    Get PDF
    Contains fulltext : 109919.pdf (Publisher’s version ) (Open Access)OBJECTIVES: To determine the relationship between lung function impairment and quantitative computed tomography (CT) measurements of air trapping and emphysema in a population of current and former heavy smokers with and without airflow limitation. METHODS: In 248 subjects (50 normal smokers; 50 mild obstruction; 50 moderate obstruction; 50 severe obstruction; 48 very severe obstruction) CT emphysema and CT air trapping were quantified on paired inspiratory and end-expiratory CT examinations using several available quantification methods. CT measurements were related to lung function (FEV(1), FEV(1)/FVC, RV/TLC, Kco) by univariate and multivariate linear regression analysis. RESULTS: Quantitative CT measurements of emphysema and air trapping were strongly correlated to airflow limitation (univariate r-squared up to 0.72, p < 0.001). In multivariate analysis, the combination of CT emphysema and CT air trapping explained 68-83% of the variability in airflow limitation in subjects covering the total range of airflow limitation (p < 0.001). CONCLUSIONS: The combination of quantitative CT air trapping and emphysema measurements is strongly associated with lung function impairment in current and former heavy smokers with a wide range of airflow limitation.01 januari 201

    Expression and Function of Androgen Receptor Coactivator p44/Mep50/WDR77 in Ovarian Cancer

    Get PDF
    Hormones, including estrogen and progesterone, and their receptors play an important role in the development and progression of ovarian carcinoma. Androgen, its receptor and coactivators have also been implicated in these processes. p44/Mep50/WDR77 was identified as a subunit of the methylosome complex and lately characterized as a steroid receptor coactivator that enhances androgen receptor as well as estrogen receptor-mediated transcriptional activity in a ligand-dependent manner. We previously described distinct expression and function of p44 in prostate, testis, and breast cancers. In this report, we examined the expression and function of p44 in ovarian cancer. In contrast to findings in prostate and testicular cancer and similar to breast cancer, p44 shows strong cytoplasmic localization in morphologically normal ovarian surface and fallopian tube epithelia, while nuclear p44 is observed in invasive ovarian carcinoma. We observed that p44 can serve as a coactivator of both androgen receptor (AR) and estrogen receptor (ER) in ovarian cells. Further, overexpression of nuclear-localized p44 stimulates proliferation and invasion in ovarian cancer cells in the presence of estrogen or androgen. These findings strongly suggest that p44 plays a role in mediating the effects of hormones during ovarian tumorigenesis
    corecore